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Abstract

Seismic signals may present large deviations in phase,
especially in the case of post-critical reflections. In
this paper we propose a method for normal moveout
with phase equalization. This method employs the
first eigenimage obtained with the use of the singular
value decomposition of the analytical signal of seismic
windowed data. We present tests of this method
in two synthetic data, both of them with post-
critical reflections. The initial results indicate that
the phase change can be corrected using complex
signals. These results must be further confirmed by
simulations on real data.

Introduction

Stacking of seismic signals is one operation of great
interest in seismic signal processing (Yilmaz, 2001). The
main goal of this operation is to generate a simulated
zero-offset (ZO) trace. For this trace, the offset between
source and receiver is zero, i.e., they are both virtually
at the same position. The stacked ZO trace has some
interesting properties (Yilmaz, 2001); the main one is the
fact that it has an improved signal-to-noise ratio (SNR)
when compared to the pre-stack traces.

In order to stack seismic signals we must perform previous
operations in the seismic traces. The operations with more
influence in the stacking are the normal moveout (NMO)
correction and velocity analysis. The NMO correction is
an operation which aims to correct the time delays (also
known as moveouts) in consecutive traces, in order to add
the traces constructively in the stacking operation (Yilmaz,
2001). The velocity analysis consists in the estimation of
the velocities for the NMO correction (Yilmaz, 2001).

Several characteristics of seismic wave propagation may
affect the stacking of seismic data. In this paper we
address the issues caused by reflections that occur at
angles larger than the critical angle, which are known as
post-critical or super-critical reflections. These reflections
differ from the normal ones because they cause changes
in the phase of seismic signals. These phase changes
significantly impact the stacking operation. In order to
constructively stack the seismic traces, it is common
practice in seismic processing discard all the traces with
post-critical reflections. This situation can significantly

diminish the number of traces used for stacking, for
instance, when dealing with shallow water reflections in the
marine case.

In order to deal with the phase change in post-critical
reflections of seismic signals, in this paper, we propose
a methodology which makes use of the complex seismic
analytic signal, obtained with the use of the Hilbert
transform (Taner et al., 1979), and the singular value
decomposition (SVD) (Peterson and DeGroat, 1988). We
named this methodology of phase equalization and it must
be performed together with the NMO correction. In the
next sections we explain NMO correction and stacking in
detail. Then, we explain the proposed phase equalization
methodology. We also show two numerical experiments
that we performed with synthetic data. The initial results
indicate that the phase changes can be corrected using the
complex signals. These results must be further confirmed
by simulations on real data.

Normal moveout

In order to understand the normal moveout (NMO)
correction, we first describe the seismic acquisition
geometry. In Fig. 1(a) we show the recording geometry,
which is also known as common-shot geometry, and the
ray paths associated with a horizontal reflector. Fig. 1(a)
illustrates a typical 2D acquisition, with source and
receivers placed in a single line (Yilmaz, 2001). We also
assume, in this paper, 2D geometries. We define s and g;
as the positions of source and receivers in the acquisition
line. The index i varies from 1 to the maximum number of
receivers at each shot. The seismic trace corresponds to
the time samples recorded at a given receiver with position
gi, associated to a shot fired at the position s. The source-
receiver coordinates of that trace are given by the pair

(S,g,')-

In Fig. 1(b) we show the common-midpoint (CMP)
geometry, with the ray paths associated with a horizontal
reflector as well. The CMP gather is formed by grouping
traces with the same midpoint, even if they come from
different shots. For the CMP geometry we define y and
hj, which are, respectively, the midpoint and half-offset
coordinates. These coordinates are givenby y = (g;+s;)/2
and hj = (g; —s;)/2. Note that h; is half the distance
between source and receiver and j varies from 1 to the
maximum number of receivers at each CMP gather.

The CMP geometry allows us to combine the reflections
from different traces of the CMP gather. This is possible
because, as shown in Fig. 1(b) for the horizontal reflector
situation, the reflections come from the same point in
depth. The combination of seismic traces from the same
CMP gather may also increase the signal-to-noise (SNR)
ratio, since the reflections in the traces were recorded at
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Figure 1: (a) Common shot and (b) common-midpoint
geometries.

different locations and time instants and were probably
corrupted by independent noise samples.

To properly combine the reflections in the CMP gather, we
need to estimate and correct the delays of the reflections
in each trace. These delays are known as moveouts. The
moveouts estimation is done by considering the traveltime
of a zero-offset trace, for which both source and receiver
are virtually placed at y. For a known velocity, this
traveltime is related to that of the other traces. In the
CMP gather configuration, a well accepted traveltime is the
normal moveout (NMO) (Yilmaz, 2001), given by

412
Plio,h) =15+~ (1)

where £y denotes the two-way zero-offset traveltime and v
can be viewed as an effective velocity.

The velocity in (1) must be estimated and the most widely
used technique is the velocity analysis (Neidell and Taner,
1971). In the next section we discuss this process in more
detail.

Velocity analysis

The procedure of velocity analysis is largely employed
in seismic signal processing. It consists in, for each g,
to design, with different velocities v, several traveltime
curves using equation (1). The velocity used in the NMO
operation is the one that results in a maximum value of
a coherence function. The most employed coherence
function in seismic processing is the semblance (Taner
and Koehler, 1969). In the seismic literature, we can
find coherence functions based in eigenstructure methods
that lead to velocity spectra with higher resolution than
semblance (Biondi and Kostov, 1989; Kirlin, 1992). These
eigenstructure methods make use of the the Multiple Signal
Classification (MUSIC), introduced in (Bienvenu and Kopp,
1980; Schmidt, 1981, 1986), which is based in some
properties of the eigendecomposition of the data.

All these coherence measures aforementioned are based
in a structure known as the seismic windowed data

matrix (Biondi and Kostov, 1989; Kirlin, 1992). The
windowing operation consists in, for a given velocity v and
fo, construct a matrix with L = (N, — 1)/2 time samples
above and below the sample given by equation (1), at each
trace of a CMP gather. The dimension of the windowed
data matrix D is N, x N;, with N, being the number of traces
in the CMP and N; being the number of time samples in
the window. When a window with correct values of 7, and
v is applied, the windowed data matrix contains several
repetitions of the reflection, all arriving at the same time
instant at all the receivers, plus noise terms. In this case,
D can be written as

D=1s" +N, (2)

where s is an N; x 1 vector that contains the samples from
the reflected wavelet, 1 is a N, x 1 vector of ones, N is
an N, x N; noise matrix independent of s, which may also
contain interfering reflections, and the superscript T refers
to the transpose operation.

As shown in (Biondi and Kostov, 1989; Kirlin, 1992), the
semblance coherence function may be written in terms of
the seismic windowed data matrix D as

1"R1
= 3)
N, Tr{R}
where R = (DD” /N,) is the spatial covariance matrix of D,

1 is a column vector of ones and Tr{-} denotes the trace
operator. The value of S falls within the interval [0, 1].

The semblance is computed for several values of 1y and v,
resulting into the so-called velocity spectrum. For each 1y,
the NMO velocity is picked from the velocity spectrum as
the one which resulted in the largest semblance.

Stacking

Stacking is the operation which virtually generates the ZO
trace, once it cannot be generated in practice since, in
this case, firing the source would damage the receiver.
To generate the stacked ZO trace, and understand how
it improves the SNR, notice that, as described in (Barros
et al, 2014), when we have a window with good
parameters, than the rows of the data matrix D correspond,
approximately, to copies of the same reflection event, but
subject to different noise samples. Also note that the center
of this window is aligned with the ZO traveltime #y. Thus,
we can generate the sample of the ZO trace at 7y by taking
the average of the samples in the center of the window.
Mathematically, this is equivalent to saying that the ZO
trace at ¢ is given by the value in the middle coordinate
of the estimated wavelet in:

s— Lpry, (4)

Ny

The operation in equation (4) computes the average of the
columns of D”. Using again the approximation in (2), we
see that this average should give us an estimate of the
seismic wavelet s. Now, recall that, if 7y and v are correct,
then all the traces in the window contain repetitions of s.

As with the velocity analysis, for stacking seismic data we
should repeat the following procedure for each #y: given 1,
we have a velocity v chosen in the velocity analysis; each
pair 1y and the corresponding v generates a data matrix D;
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for each D we compute § according to (4); and we assign
the center entry of § to the sample of the ZO trace at ;. The
value of 1 is increased according to the desired sampling
rate, and the process is repeated.

In many ways, stacking is related to semblance. In fact, it is
not hard to show that the semblance can be computed as

N |8l

§= N2 T{DDT}’

(®)

Thus, we can think of the semblance as a measure that
compares the energy of the stacked data, ||§]?, with the
total energy in the data window, Tr{DD }. The parameters
to and v are chosen so as to give a large energy for the
stacked signal §.

On the other hand, we have seen that the use of MUSIC
yields a velocity spectrum with much better resolution than
semblance (Biondi and Kostov, 1989; Kirlin, 1992; Barros
et al., 2014). Given the parallel between semblance and
stacking, a natural question is, then, if we can devise
a stacking method that inherits the higher resolution of
MUSIC. One approach in this direction is to adapt MUSIC.
In its current form, MUSIC provides a sort of spectrum, a
measure of the presence of energy in a given window. We
intend to adapt this method, so that it provides an estimate
of the amplitude of the signal in the window. Similar
results following these lines were shown in (Couillet and
Kammoun, 2014).

Phase equalization

Let us now reinterpret the approximation for the data matrix
in (2). We begin by considering the possibility of using
complex traces, obtained as the Hilbert transform of the
seismic data (Taner et al.,, 1979). Thus, we assume
complex traces, so that the actual wavelet is given by the
real part of the complex wavelet, %{s}. To allow for the
use of complex signals, we henceforth adopt the use of the
Hermitian instead of the transpose. Furthermore, we note
that, in (2), we assume that the wavelet appears with the
same amplitude in all the sensors. Obviously, this is not a
good approximation, and we should perhaps write

D =hs +N, (6)

where h = [hy,hy,...,hy ] is a vector with the amplitude and
the phase of the wavelet in each receiver. Note that the
use of s indicates that we are actually modeling the data
matrix in terms of the conjugate of the wavelet, not the
wavelet itself. However, in the end, we are interested in
the real part of the complex wavelet, so that the use of s or
its conjugate is immaterial. Since this makes the notation
clearer, we will continue to use the conjugate of s.

Under the model in (6), the best estimate for the wavelet, in
the sense of maximizing the SNR, is given by the matched
filter (Kay, 1993):

§= Dh. (7)

|[h]2
This expression allows for an interesting, albeit obvious,
interpretation. Stacking, as defined above, computes the
average of the data matrix. This is equivalent to usingh =1
in the matched filter in (7), as was already done in (4). In
other words, the traditional stacking operation is optimal
when the wavelet appears with the same amplitude and

phase in all receivers. Note that (7) has been known in the
geophysical literature for a long time, at least for the real
case (Robinson, 1970; Mayne, 1962).

In general h is unknown. Thus, instead of using the actual
matched filter, in general it is usual to estimate the wavelet
as

§=D"w. (8)

The search for a vector w that approximates the matched
filter, thus improving stacking, has a rich history in
the literature (Grion and Mazzotti, 1998; Peterson and
DeGroat, 1988; Liu et al., 2009). Here, we propose to
estimate h using the singular value decomposition (SVD)
of the data matrix D. A similar approach was followed
in (Grion and Mazzotti, 1998). Our approach is, in many
ways, more general, among other reasons for the use of
the complex trace.

To see how the SVD can be used to estimate w, consider
the SVD of the approximation in (6). Let o be its largest
singular value, and let u and v be the corresponding left
and right eigenvectors. Thus, we may write

D =ocuv +W. 9)

The matrix cuv”’ is known as the first eigenimage of D,
and can be shown to be the best rank-one approximation
to D (Horn and Johnson, 2012). Note that the signal
component of D in (6) also has rank one. Thus, we may
write

cuv? ~hs”. (10)

In the literature, the matrix ocuv” is said to form the
signal subspace of the data (Scharf and Friedlander, 1994).
Furthermore, note that, ideally, the matrix W contains only
noise. Thus, ignoring this matrix should improve the SNR
of the signal.

Now, using (10), we see that the left and right eigenvectors
are proportional to h and s, so that we may write

h ~ ou (11)
~ Pv. (12)

A few observations are in order. It is interesting to observe
that when the SVD is computed, its output has |ju? =
[[v|?> = 1. This implies that |a| = ||h|| and |B| = |s||. Also
note that these constraints say nothing about the phase of
o and B. However, using again (11) and (12) in (10), we
may see that the following relation holds:

ap* ~o. (13)

This equation is the only constraint we have on the
values of a and B, so the SVD does not provide
enough information for us to determine h, which requires
knowledge of o and u. In fact, this problem has a phase
ambiguity: for any pair @ and 8 satisfying (13), and any
phase 6, then ae/® and Be~/? also satisfy (13).

To solve the phase ambiguity 6, and to solve the
underdetermined equation in (13), we propose to study
several assumptions on h. This approach is already
followed in the literature where, as mentioned before,
the widely used stacking operation is equivalent to the
assumption that h = 1.  We propose several other
approaches, including:
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1. We assume that the first entry of h, 4, is equal to one.
This is equivalent to assume that a = 1/u; and, thus,
from (11) we have:

(14)

Where h is the estimate of h. Thus, we may stack the
data using (8), where the approximated matched filter
is given by

w=uju. (15)

2. We assume that all entries of h have unit magnitude,
and their phase is given by the phase of u. In this
case, we need to solve for the phase ambiguity 6. To
that end, we may assume that the phase of 4, is zero,
which is equivalent to saying that 6 = —arg{u;}. In
this case,

h= [e—j(arg{un}%) o Jarg{u}+6) e—j(arg{uN,}W)}_
(16)
and
h

v (17)

W=

Thus, in this approach we neglect the difference
between the magnitudes of the elements of h and its
relationship to u as modeled in (11) and we focus on
the correction of the phase. Also, it is interesting to
notice that if all entries of h are real, i.e., equal to one,
then using (17) in (8) results in regular stacking, i.e.,
the stacked trace becomes the average of the traces
in the window.

3. We may use the later approach, but instead of
estimate the phase by 6 = —arg{u;} we estimate it
by the average of all the phases from u:

N,
6— —Nirizzlarg{u,-}. (18)

Previous results
One post-critical reflection

In this numerical example we used a synthetic CMP with
one single reflection, generated by ray-tracing. To generate
the data we considered one homogeneous layer with the
depth of 250m and interval velocity of 1500m/s. This
layer presents an interface with another layer with interval
velocity of 1800m/s. The data is shown in Fig. 2. It is
possible to observe the change in the wavelet shape after
the critical angle, which is located in the offset of 753 m. The
blue lines in Fig. 2 indicate a window with samples around
the center of the wavelet, designed with the velocity of the
center of the wavelet, picked from a semblance coherence
panel. In Fig. 3(a) we show the result of performing the
windowing operation to select the reflection. It is possible
to observe the change in the phase with the increase of the
offset. In Fig. 3(b) we apply the the windowing operation
with phase equalization using the second approach from
previous section. We observe that the phase shift was
complectly corrected.

Time [s]

. . . .
0 500 1000 1500 2000 2500
Offset [m]

Figure 2: Synthetic data with one post-critical reflection,
after the offset of 753m. The blue lines indicate a window
with samples around the center of the wavelet, designed
with the velocity of the center of the wavelet, picked from a
semblance coherence panel.
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Figure 3: (a) Regular NMO operation in the window of
Fig. 2. (b) Phase equalization and NMO operation in the
window of Fig. 2.

CMP with several post-critical reflections

We present now a numerical example with a more complex
synthetic data. We generated this data also with ray-
tracing, based in a model with six homogeneous layers.
The reflections of the first three layers present a phase
rotation, due to critical angles. We show in Table 1 the
model parameters used to generate this data. In Fig. 4 we
show the CMP data we generated for this example.

In Fig. 5 we show the NMO corrected CMP family for
the data of Fig. 4. The blue dots in Fig. 5 mark the
offset after which we only have critical reflections for a
given event. Figures 5(a) and 5(b) apply the SVD to filter
out non horizontal events; real and complex traces are
used in figures 5(a) and 5(b), respectively. For the phase
equalization in Fig. 5(b) we adopted the second approach
from previous section. In other words, both figures show,
for each 1y, the center of the first eigenimage of the data
matrix D using the window with the corresponding #, and
v. As seen by the top arrows in this figure, the complex
trace allows us to deal with post-critical reflections. These
reflections differ from the normal ones only in the phase of
their Hilbert transforms. As these initial results indicate,
this phase change can be corrected using the complex
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Table 1: Model parameters for data generation.

Critical angle
Depth [m] | Velocity [m/s] | 1y [s] offset [m]
Layer 1 250 1500 0.33 753.78
Layer 2 650 1800 0.78 3010.5
Layer 3 1250 1900 1.41 1056.9
Layer 4 1450 4600 1.50 | No critical angle
Layer 5 1950 2100 1.97 | No critical angle
Layer 6 2500 2200 2.47 No critical angle
2300
0
0.5*
i
1 ]]]l]]]].ll..
o=
g0
g ;
: l'] JJ“‘ ;
T i
35r

4
[ 500 1000 1500 2000 2500 3000 3500 4000
ffset [m]

Figure 4: Synthetic CMP with several post-critical angle
reflections.

signals. If this result proves to be robust, we may correct
for the phase change and coherently combine post- and
pre-critical reflections. In the literature, these two types of
reflections are normally treated separately. It is possible to
observe in Fig. 5 artifacts between the reflections. These
artifacts are caused because coherent events appear in
the velocity analysis and NMO correction for #, where
there are no events. We are currently investigating these
appearance of artifacts and methods for its mitigation.

The main motivation for studying the complex trace was
the phase equalization of post-critical reflections. However,
Fig. 5 suggests that the complex trace may have other
benefits. In fact, as indicated by the bottom arrows in both
figures, the complex traces seem to be able to correct small
delays between traces, making the processing more robust
to events that are not perfectly aligned. In this particular
case, the misalignment is caused by a mismatch between
the NMO traveltime in (1) and the actual traveltime.
However, the misalignment is also common in land data,
where residual static corrections must be applied to the
data (Marsden, 1993). Also, as indicated by the middle
arrows, the complex trace seems to do a better job at
cancelling interfering events. Obviously, these results must
be further confirmed by simulations on real data and by
a careful analysis of the expected performance of the
method, and an explanation for all these apparent benefits.

~

~2{[[[ ot it
1 ) I

?1'5‘ | W \é

il
2 i; I N\ |
et il

3
0 1000 2000 3000 4000 5000 6000 7000 8000
Offset [m]

(a)

-

—
—

Time [s]

T

25

AN

0 1000 2000 3000 4000 5000 6000 7000 8000
Offset [m]

(o)

Figure 5: CMP gather after NMO correction. To filter out
non-horizontal events, for each 7y we use only the first
eigenimage of the data window of the real (in figure a) or
the complex (in figure b) trace. The top arrows indicate the
point where the complex trace is able to compensate for
the phase change of the post-critical reflection. The middle
arrow indicates a point where the complex trace improves
the elimination of an interfering event. The bottom arrow
shows a point where the complex trace corrects for timing
errors. The blue dots in these figures mark the offset after
which we only have critical reflections for a given event.

Fourteenth International Congress of The Brazilian Geophysical Society



BARROS ET AL. 6

Conclusions

In this paper we addressed the phase equalization of
seismic signals for the normal moveout correction and
stacking operations. Seismic signals may present large
deviations in phase, especially in the case of post-critical
reflections. This can lead to situations where only few
traces are used for the stacking operation. We proposed
a method for phase equalization which employs the first
eigenimage obtained with the use of the singular value
decomposition of the analytical signal of seismic windowed
data. We also suggested different methods for the phase
estimation, which employ the SVD. We tested our proposal
in two synthetic data, both of them with post-critical
reflections. The first synthetic data presented only a single
reflection, but the second data was more complex, with
more reflections. The first example indicates that the phase
shift caused by reflections after the offset of post-critical
angles can be correct by the use of the phase equalization
method. The initial results of the second example also
indicate that the phase change can be corrected using
the complex signals. If the proposed method proves to
be robust, we may correct for the phase change and
coherently combine post- and pre-critical reflections. The
second example also indicates that the complex trace
seems to do a better job at cancelling interfering events.
Obviously, these results must be further confirmed by
simulations on real data and by a careful analysis of the
expected performance of the method.
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